

## 2<sup>nd</sup> International Conference on Nanotechnology: Theory and Applications, Cairo, 19 – 21 Dec., 2022

Ref. 072

# Strong-base free synthesis enhancing the structural, magnetic and optical properties of Mn/Co and Zn/Co substituted cobalt ferrites

Hala G. Abd-Elbaky<sup>1,2</sup>, M. Rasly<sup>1</sup>, Reem G. Deghadi<sup>2</sup>, Gehad G. Mohamed<sup>2</sup>, M. M. Rashad<sup>1</sup>

<sup>1</sup> Electronic and Magnetic Materials Division, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87 Helwan 11421, Cairo, Egypt

<sup>2</sup> Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt

#### **KEYWORDS**

Synthesis, spinel cobalt ferrites, hysteresis loops

#### SHORT SUMMARY

Besides to the incorporation of all reactants into the final products by Greener methods, they also shown several advantages, including simplicity, low toxicity, cost-effectiveness, and eco-friendliness. In this mainstream, we successfully synthesized spinel cobalt ferrites, with compositions  $M_xCo_{1-x}Fe_2O_4$  (x=0.0, 0.1, 0.3 and 0.5) where M is a transition metal ion as  $Mn^{2+}$  and  $Zn^{2+}$ , by a novel strong-base free approach, enabling minimization of hazardous products as well. The single phase has obtained by annealing the created precursors at relatively low temperature 1000 °C for 2h. Figure 1 illustrates a comparative representative FE-SEM images of transition metal ions (M=  $Mn^{2+}$  and  $Zn^{2+}$ ) substituted  $M_xCo_{1-x}Fe_2O_4$  (x = 0.1 and 0.5) ferrite samples. Apparently, the pyramidal-like structure has been manifested for (a)  $Mn_{0.1}Co_{0.9}Fe_2O_4$  and (b)  $Zn_{0.1}Co_{0.9}Fe_2O_4$  samples. However, the particle size of the obtained  $Zn_{0.1}Co_{0.9}Fe_2O_4$  is smaller than that of the  $Mn_{0.1}Co_{0.9}Fe_2O_4$  sample. Further increasing the subrogated up to x=0.5, a great reduction in the average particle size and an increase in the agglomeration have distinguished specifically for Zn<sub>0.1</sub>Co<sub>0.9</sub>Fe<sub>2</sub>O<sub>4</sub> sample than Mn<sub>0.1</sub>Co<sub>0.9</sub>Fe<sub>2</sub>O<sub>4</sub> sample, suggesting that the Zn substitution significantly suppressed the crystal growth [1]. The magnetization of the produced manganese and zinc doped cobalt ferrite powders was performed at room temperature under an applied field of 5 kOe and the hysteresis loops of the ferrite powders were obtained. Plots of magnetization (M) as a function of applied field (H) for different molar ratios from 0.1 to 0.5 are shown in Figure 2(a-b), and the corresponding parameters are listed in Table 1. The magnetic hysteresis (M-H) loops reveals that the samples have ferrimagnetic behavior with soft magnetic nature, showing S-like hysteresis loops. At room temperature, the saturation magnetization  $(M_s)$  of the pure cobalt ferrite is 42.869 emu/g, which is higher than that recently reported 31.46 emu/g for  $CoFe_2O_4$  nanoparticles [2].

### **EXTENDED ABSTRACT**

For Mn-substituted CoFe<sub>2</sub>O<sub>4</sub> system, increasing the content of Mn2+ ions resulted in an increase in saturation magnetization up to x = 0.3, then it decreased as x increased as shown in Figure 2a and Table 1. For the Mn-substituted CoFe<sub>2</sub>O<sub>4</sub> system, it has found that the change in the saturation magnetization of Mn-substituted CoFe<sub>2</sub>O<sub>4</sub> system is not linearly change with x content. The increase in saturation magnetization of Mn-substituted CoFe<sub>2</sub>O<sub>4</sub> system might be due to the fact that Co<sup>2+</sup> ions prefer the octahedral B-site, whereas Fe<sup>3+</sup> ions prefer both the tetrahedral A- and octahedral Bsites [3,4]. When Mn<sup>2+</sup> is substituted, it prefers the octahedral (B) site, and some Co<sup>2+</sup> and Fe<sup>3+</sup> ions migrate from the octahedral (B) site to the tetrahedral [A] site [5-6], since the atomic radius of Mn<sup>2+</sup> ion (83 pm) is larger than either that of Fe<sup>3+</sup> located at the tetrahedral site (49 pm), Fe<sup>3+</sup> located at the octahedral site (64.5 pm) and Co<sup>2+</sup> ion (74.5 pm). The replacement of low magnetic moment of Co<sup>2+</sup> (d7) (3 µB) by large magnetic moment of  $Mn^{2+}$  (d5) (5  $\mu$ B) at an octahedral (B) site may explain, the net magnetic moments per molecule increase and so magnetization increases from 42.869 to 62.382 emu/g with increasing substitution concentration of Mn<sup>2+</sup> from 0.0 to 0.3. As a result, when x = 0.5, saturation magnetization steadily decreased as Mn<sup>2+</sup> substitution increased, as shown in Figure 2a. Furthermore, at higher Mn<sup>2+</sup> ions concentrations, the conversion of equivalent amounts of  $Fe^{3+}$  (5  $\mu B$ ) to  $Fe^{2+}$  (4  $\mu B$ ) as well as  $Mn^{2+}$  (5  $\mu B$ ) to Mn3+ (d4) (4  $\mu B$ ) may be related to the decrease in saturation magnetization and of the ferrite nano-system.

For Zn-substituted CoFe<sub>2</sub>O<sub>4</sub> system, the saturation magnetization ( $M_s$ ) of Co<sub>1- x</sub>Zn<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> initially decreases at molar ratio from 0.0 to 0.1,



## 2<sup>nd</sup> International Conference on Nanotechnology: Theory and Applications, Cairo, 19 – 21 Dec., 2022

Ref. 072

then increases from 0.1 to 0.3, and subsequently decreases for x = 0.5, as shown in inset Figure 2b Table 1. The increase in saturation magnetization of Zn-substituted CoFe<sub>2</sub>O<sub>4</sub> system might be due to the fact that allocation of Zn<sup>2+</sup> ion (82 pm) at the place of Fe<sup>3+</sup> ion at the tetrahedral site (49 pm) and Fe<sup>3+</sup> ion displaced from tetrahedral to octahedral sites with the substitution. The substitution of nonmagnetic Zn2+ ions into the tetrahedral sites causes the net magnetic moments per molecule increase and so magnetization increases. This is the reason for the increase of  $M_s$ from 40.870 to 92.636 emu/g as x increased. The value of  $M_s$  begins to decrease at x = 0.5, due to zinc ions replace Fe<sup>3+</sup> ions at A-sites and move to B-sites to indirectly replace Co<sup>2+</sup> ions at B-sites at higher concentrations beyond x = 0.5, which caused the net magnetization decreasing due to preference of Zn to occupy the A-sites.

As shown in Table 1, the general trend of the coercivity ( $H_c$ ) has decreased as the molar ratios increased. This can be explained in terms of the influence of the microstructure, grain size and spin-orbit coupling at the tetrahedral [A] and octahedral (B) sites on the magnetic behavior. The saturation magnetization ( $M_s$ ) has related to  $H_c$  through Brown's relation [7],

$$H_c = 2K_1 / \mu_0 M_s$$
 (1)

where  $K_I$  is the anisotropy constant and  $\mu_0$  is the magnetic permeability of free space. According to this relation,  $H_c$  is inversely proportional to  $M_s$  at constant value of  $K_I$ , which is in good agreement with the experimental results.

The following equation is used to calculate the magnitudes of squareness ratio ( $M_{rs}$ ) of manganese and zinc cobalt ferrite [8].

$$Mrs = Mr / Ms$$
 (2)

#### References

- [1] P. A. Vinosha, A. Manikandan, A. S. J. Ceicilia, A. Dinesh, G. F. Nirmala, A. C. Preetha, Y. Slimani, M. A. Almessiere, A. Baykal, B. Xavi "Review on recent advances of zinc substituted cobalt ferrite nanoparticles: Synthesis characterization and diverse applications" Ceramics International 47(8), (2021) 10512-10535
- [2] Ali A. Ati, Alyaa H. Abdalsalam, and Ali S. Hasan, Thermal, microstructural and magnetic properties of manganese substitution cobalt ferrite prepared via co-precipitation method. J Mater Sci: Mater Electron 32:3019–3037 (2021).
- [3] C. Stein, M. Bezerra, G. Holanda, J. Andre'-Filho, P. Morais, Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by coprecipitation at increasing temperatures. AIP Adv. 8, 056303 (2018).
- [4] G. Allaedini, S.M. Tasirin, P. Aminayi, Magnetic properties of cobalt ferrite synthesized by hydrothermal method. Int. Nano Lett. 5, 183–186 (2015).
- [5] K. Kim, H. Kim, Y. Park, J. Park, Variation of the structural and the magnetic properties in Mndoped CoFe2O4 thin films. J. Korean Phys. Soc. 49, 1024–1028 (2006).
- [6] 42. C.H. Kim, Y. Myung, Y.J. Cho, H.S. Kim, S.-H. Park, J. Park, J.-Y. Kim, B. Kim, Electronic structure of vertically aligned Mn-doped CoFe2O4 nanowires and their application as humidity sensors and photodetectors. J. Phys. Chem. C 113, 7085–7090 (2009).
- [7] K.H. Maria, S. Choudhury, M.A. Hakim, Structural phase transformation and hysteresis behavior of Cu-Zn ferrites. Int. Nano Lett. 3, 42 (2013).
- [8] S. Dabagh, A.A. Ati, R.M. Rosnan, S. Zare, Z. Othaman, Effect of Cu–Al substitution on the structural and magnetic properties of Co ferrites. Mater. Sci. Semicond. Process. 33, 1–8 (2015).



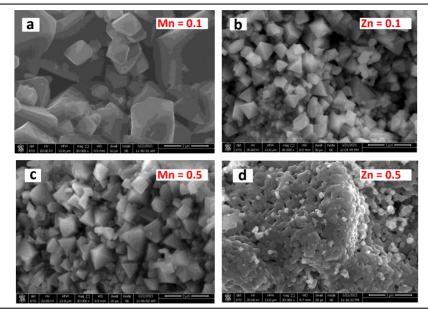



Figure 1: FE-SEM micrographs of the produced transition metal (M=  $Mn^{2+}$  and  $Zn^{2+}$ ) ions substituted  $M_xCo_1$ .  $_xFe_2O_4$  (x = 0.1 and 0.5) nanopowders.

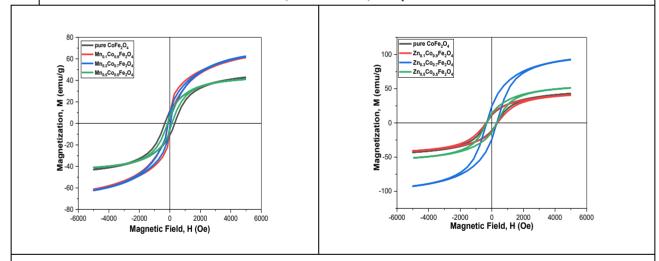



Figure 2: The *M-H* hysteresis loops of a)  $Mn_xCo_{1-x}Fe_2O_4$  and b)  $Zn_xCo_{1-x}Fe_2O_4$  nanopowders for different molar ratios (x = 0.0, 0.1, 0.3 and 0.5) a novel strong base-free co-precipitation method and annealed at 1000 °C for 2 h.

Table 1: Magnetic properties of  $Mn_xCo_{1-x}Fe_2O_4$  and  $Zn_xCo_{1-x}Fe_2O_4$  nanopowders for different molar ratios (x = 0.0, 0.1, 0.3 and 0.5) a novel strong base-free co-precipitation method and annealed at 1000 °C for 2 h.

| Parameter (x) | Magnetic properties       |        |                                           |        |                       |        |                                           |        |
|---------------|---------------------------|--------|-------------------------------------------|--------|-----------------------|--------|-------------------------------------------|--------|
|               | Saturation Mag.  Ms emu/g |        | Remanence Mag. <i>M<sub>r</sub></i> emu/g |        | Coercivity $H_c$ , Oe |        | Squareness Ratio $(M_{rs}) = M_{r}/M_{s}$ |        |
|               | Mn                        | Zn     | Mn                                        | Zn     | Mn                    | Zn     | Mn                                        | Zn     |
| 0.0           | 42.869                    | 42.869 | 11.217                                    | 11.217 | 325.30                | 325.30 | 0.2617                                    | 0.2617 |
| 0.1           | 61.355                    | 40.870 | 7.0624                                    | 11.998 | 79.828                | 368.61 | 0.1151                                    | 0.2936 |
| 0.3           | 62.382                    | 92.636 | 6.5257                                    | 24.380 | 77.248                | 317.98 | 0.1046                                    | 0.2632 |
| 0.5           | 40.992                    | 51.198 | 6.1098                                    | 14.140 | 142.41                | 324.30 | 0.149                                     | 0.2762 |